GSO IEC 62364:2021

IEC 62364:2019
Gulf Standard   Current Edition · Approved on 01 July 2021

Hydraulic machines - Guidelines for dealing with hydro-abrasive erosion in Kaplan, Francis and Pelton turbines

GSO IEC 62364:2021 Files

GSO IEC 62364:2021 Scope

IEC 62364:2019 is available as IEC 62364:2019 RLV which contains the International Standard and its Redline version, showing all changes of the technical content compared to the previous edition.

IEC 62364:2019 gives guidelines for:
a) presenting data on hydro-abrasive erosion rates on several combinations of water quality, operating conditions, component materials, and component properties collected from a variety of hydro sites;
b) developing guidelines for the methods of minimizing hydro-abrasive erosion by modifications to hydraulic design for clean water. These guidelines do not include details such as hydraulic profile shapes which are determined by the hydraulic design experts for a given site;
c) developing guidelines based on “experience data” concerning the relative resistance of materials faced with hydro-abrasive erosion problems;
d) developing guidelines concerning the maintainability of materials with high resistance to hydro-abrasive erosion and hardcoatings;
e) developing guidelines on a recommended approach, which owners could and should take to ensure that specifications communicate the need for particular attention to this aspect of hydraulic design at their sites without establishing criteria which cannot be satisfied because the means are beyond the control of the manufacturers;
f) developing guidelines concerning operation mode of the hydro turbines in water with particle materials to increase the operation life.
It is assumed in this document that the water is not chemically aggressive. Since chemical aggressiveness is dependent upon so many possible chemical compositions, and the materials of the machine, it is beyond the scope of this document to address these issues. It is assumed in this document that cavitation is not present in the turbine. Cavitation and hydro-abrasive erosion can reinforce each other so that the resulting erosion is larger than the sum of cavitation erosion plus hydro-abrasive erosion. The quantitative relationship of the resulting hydro-abrasive erosion is not known and it is beyond the scope of this document to assess it, except to suggest that special efforts be made in the turbine design phase to minimize cavitation. Large solids (e.g. stones, wood, ice, metal objects, etc.) traveling with the water can impact turbine components and produce damage. This damage can in turn increase the flow turbulence thereby accelerating wear by both cavitation and hydro-abrasive erosion. Hydro-abrasive erosion resistant coatings can also be damaged locally by impact of large solids. It is beyond the scope of this document to address these issues. This document focuses mainly on hydroelectric powerplant equipment. Certain portions can also be applicable to other hydraulic machines. This second edition cancels and replaces the first edition published in 2013. This edition constitutes a technical revision. This edition includes the following significant technical changes with respect to the previous edition:
a) the formula for TBO in Pelton reference model has been modified;
b) the formula for calculating sampling interval has been modified;
c) the chapter in hydro-abrasive erosion resistant coatings has been substantially modified;
d) the annex with test data for hydro-abrasive erosion resistant materials has been removed;
e) a simplified hydro-abrasive erosion evaluation has been added.

Key words: Hydraulic Machines, Hydro-Abrasive Erosion, Kaplan, Francis, Pelton Turbines.

Best Sellers From Electrical Sector

GSO 2530:2016
 
Gulf Standard
Energy Labelling And Minimum Energy Performance Requirements For Air-Conditioners
GSO 34:2007
 
Gulf Technical Regulation
LEAD-ACID STARTER BATTERIES USED FOR MOTOR VEHICLES AND INTERNAL COMBUSTION ENGINES
GSO 35:2007
 
Gulf Standard
Methods of test for lead-acid starter batteries used for motor vehicles and internal combustion engines
GSO 1899:2016
 
Gulf Standard
GCC Standard voltages and frequencies for AC transmission and distribution systems

Recently Published from Electrical Sector

GSO IEC 61558-2-2:2024
IEC 61558-2-2:2022 
Gulf Standard
Safety of transformers, reactors, power supply units and combinations thereof - Part 2-2: Particular requirements and tests for control transformers and power supply units incorporating control transformers
GSO IEC 60664-1:2024
IEC 60664-1:2020 
Gulf Standard
Insulation coordination for equipment within low-voltage supply systems - Part 1: Principles, requirements and tests
GSO IEC 61936-2:2024
IEC 61936-2:2023 
Gulf Standard
Power installations exceeding 1 kV AC and 1,5 kV DC - Part 2: DC
GSO IEC TS 62915:2024
IEC TS 62915:2023 
Gulf Standard
Photovoltaic (PV) modules - Type approval, design and safety qualification - Retesting