GSO ASTM D2700:2024

Gulf Standard   Current Edition
· Approved on 25 April 2024 ·

Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel

Liquid fuels
Including gasoline, diesel, kerosene, etc.

GSO ASTM D2700:2024 Files

GSO ASTM D2700:2024 Scope

1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Motor octane number, including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested in a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The octane number scale is defined by the volumetric composition of primary reference fuel blends. The sample fuel knock intensity is compared to that of one or more primary reference fuel blends. The octane number of the primary reference fuel blend that matches the knock intensity of the sample fuel establishes the Motor octane number. 1.2 The octane number scale covers the range from 0 to 120 octane number, but this test method has a working range from 40 to 120 octane number. Typical commercial fuels produced for automotive spark-ignition engines rate in the 80 to 90 Motor octane number range. Typical commercial fuels produced for aviation spark-ignition engines rate in the 98 to 102 Motor octane number range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Motor octane number range. 1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pounds units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment. 1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and deter- mine the applicability of regulatory limitations prior to use. For more specific hazard statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3(6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.12.4, and X4.5.1.8. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Best Sellers From Oil and Gas Sector

GSO 1180:2021
 
Gulf Standard
Automatic transmission fluid (ATF)
GSO 672:2010
 
Gulf Standard
Liquefied petroleum gases (LPG) for household use( mixture of commerical propane and butane).
GSO 1161:2021
 
Gulf Standard
HLP HYDRAULIC OILS
GSO 477:2011
 
Gulf Standard
Gulf Guide of Standard Specifications for Diesel(Gas Oil)

Recently Published from Oil and Gas Sector

GSO 1785-1:2024
 
Gulf Technical Regulation
Lubricating Oils for Internal Combustion Engines – Part 1: API Classifications of Lubricating Oils for Gasoline and Diesel Engines
GSO ASTM D6377:2024
ASTM D6377:20 
Gulf Standard
Standard Test Method for Determination of Vapor Pressure of Crude Oil: VPCR<inf>x</inf > (Expansion Method)
GSO ISO 15663:2024
ISO 15663:2021 
Gulf Standard
Petroleum, petrochemical and natural gas industries — Life cycle costing
GSO ASTM D5133:2024
ASTM D5133:20a 
Gulf Standard
Standard Test Method for Low Temperature, Low Shear Rate, Viscosity/Temperature Dependence of Lubricating Oils Using a Temperature-Scanning Technique